In statistics, the terms Type I error (also, α error, or false positive) and type II error (β error, or a false negative) are used to describe possible errors made in a statistical decision process. In 1928, Jerzy Neyman (1894-1981) and Egon Pearson (1895-1980), both eminent statisticians, discussed the problems associated with "deciding whether or not a particular sample may be judged as likely to have been randomly drawn from a certain population" (1928/1967, p.1): and identified "two sources of error", namely:
(α) the error of rejecting a hypothesis that should have been accepted, and( β) the error of accepting a hypothesis that should have been rejected
In 1930, they elaborated on these two sources of error, remarking that "in testing hypotheses two considerations must be kept in view, (1) we must be able to reduce the chance of rejecting a true hypothesis to as low a value as desired; (2) the test must be so devised that it will reject the hypothesis tested when it is likely to be false"
When an observer makes a Type I error, they are observing a statistical difference when in truth there is none (rejecting a null hypothesis when it is actually true). For example, a pregnancy test with a positive result (indicating that the person taking the test is pregnant) has produced a false positive in the case where the person is not pregnant. A Type II error, or a "false negative", is the error of failing to reject a null hypothesis when the alternative hypothesis is the true state of nature. For example, a type II error occurs if a pregnancy test reports negative when the person is, in fact, pregnant.
Scientists recognize two different sorts of error:
Statistical error: Type I and Type II
Statisticians speak of two significant sorts of statistical error. The context is that there is a "null hypothesis" which corresponds to a presumed default "state of nature", e.g., that an individual is free of disease, that an accused is innocent, or that a potential login candidate is not authorized. Corresponding to the null hypothesis is an "alternative hypothesis" which corresponds to the opposite situation, that is, that the individual has the disease, that the accused is guilty, or that the login candidate is an authorized user. The goal is to determine accurately if the null hypothesis can be discarded in favor of the alternative. A test of some sort is conducted (a blood test, a legal trial, a login attempt), and data is obtained. The result of the test may be negative (that is, it does not indicate disease, guilt, or authorized identity). On the other hand, it may be positive (that is, it may indicate disease, guilt, or identity). If the result of the test does not correspond with the actual state of nature, then an error has occurred, but if the result of the test correspods with the actual state of nature, then a correct decision has been made.
There are two kinds of error, classified as "Type I error" and "Type II error," depending upon which hypothesis has incorrectly been identified as the true state of nature.
Type I error
Type I error, also known as an "error of the first kind", an α error, or a "false positive": the error of rejecting a null hypothesis when it is actually true. Plainly speaking, it occurs when we are observing a difference when in truth there is none.
A false positive normally means that a test claims something to be positive, when that is not the case. For example, a pregnancy test with a positive result (indicating that the woman taking the test is pregnant) has produced a false positive in the case where the woman is not pregnant.
Type II error
Type II error, also known as an "error of the second kind", a β error, or a "false negative":the error of failing to reject a null hypothesis when the alternative hypothesis is the true state of nature. In other words, this is the error of failing to observe a difference when in truth there is one. This type of error can only occur when the statistician fails to reject the null hypothesis. In the example of a pregnancy test, a type II error occurs if the test reports false when the woman is, in fact, pregnant.
(α) the error of rejecting a hypothesis that should have been accepted, and( β) the error of accepting a hypothesis that should have been rejected
In 1930, they elaborated on these two sources of error, remarking that "in testing hypotheses two considerations must be kept in view, (1) we must be able to reduce the chance of rejecting a true hypothesis to as low a value as desired; (2) the test must be so devised that it will reject the hypothesis tested when it is likely to be false"
When an observer makes a Type I error, they are observing a statistical difference when in truth there is none (rejecting a null hypothesis when it is actually true). For example, a pregnancy test with a positive result (indicating that the person taking the test is pregnant) has produced a false positive in the case where the person is not pregnant. A Type II error, or a "false negative", is the error of failing to reject a null hypothesis when the alternative hypothesis is the true state of nature. For example, a type II error occurs if a pregnancy test reports negative when the person is, in fact, pregnant.
Scientists recognize two different sorts of error:
- Statistical error: the difference between a computed, estimated, or measured value and the true, specified, or theoretically correct value (see errors and residuals in statistics) that is caused by random, and inherently unpredictable fluctuations in the measurement apparatus or the system being studied.
- Systematic error: the difference between a computed, estimated, or measured value and the true, specified, or theoretically correct value that is caused by non-random fluctuations from an unknown source and which, once identified, can usually be eliminated.
Statistical error: Type I and Type II
Statisticians speak of two significant sorts of statistical error. The context is that there is a "null hypothesis" which corresponds to a presumed default "state of nature", e.g., that an individual is free of disease, that an accused is innocent, or that a potential login candidate is not authorized. Corresponding to the null hypothesis is an "alternative hypothesis" which corresponds to the opposite situation, that is, that the individual has the disease, that the accused is guilty, or that the login candidate is an authorized user. The goal is to determine accurately if the null hypothesis can be discarded in favor of the alternative. A test of some sort is conducted (a blood test, a legal trial, a login attempt), and data is obtained. The result of the test may be negative (that is, it does not indicate disease, guilt, or authorized identity). On the other hand, it may be positive (that is, it may indicate disease, guilt, or identity). If the result of the test does not correspond with the actual state of nature, then an error has occurred, but if the result of the test correspods with the actual state of nature, then a correct decision has been made.
There are two kinds of error, classified as "Type I error" and "Type II error," depending upon which hypothesis has incorrectly been identified as the true state of nature.
Type I error
Type I error, also known as an "error of the first kind", an α error, or a "false positive": the error of rejecting a null hypothesis when it is actually true. Plainly speaking, it occurs when we are observing a difference when in truth there is none.
A false positive normally means that a test claims something to be positive, when that is not the case. For example, a pregnancy test with a positive result (indicating that the woman taking the test is pregnant) has produced a false positive in the case where the woman is not pregnant.
Type II error
Type II error, also known as an "error of the second kind", a β error, or a "false negative":the error of failing to reject a null hypothesis when the alternative hypothesis is the true state of nature. In other words, this is the error of failing to observe a difference when in truth there is one. This type of error can only occur when the statistician fails to reject the null hypothesis. In the example of a pregnancy test, a type II error occurs if the test reports false when the woman is, in fact, pregnant.
Sat Apr 08, 2023 8:31 am by Dr Abdul Aziz Awan
» Video for our MPH colleagues. Must watch
Sun Aug 07, 2022 11:56 pm by The Saint
» Salam
Sun Jan 31, 2021 7:40 am by mr dentist
» Feeling Sad
Tue Feb 04, 2020 8:27 pm by mr dentist
» Look here. Its 2020 and this is what we found
Mon Jan 27, 2020 7:23 am by izzatullah
» Sad News
Fri Jan 11, 2019 6:17 am by ameen
» Pakistan Demographic Profile 2018
Fri May 18, 2018 9:42 am by Dr Abdul Aziz Awan
» Good evening all fellows
Wed Apr 25, 2018 10:16 am by Dr Abdul Aziz Awan
» Urdu Poetry
Sat Apr 04, 2015 12:28 pm by Dr Abdul Aziz Awan