Hypertension
Hypertension, commonly referred to as "high blood pressure", is a medical condition in which the blood pressure is chronically elevated. While it is formally called arterial hypertension, the word "hypertension" without a qualifier usually refers to arterial hypertension. Hypertension has been associated with a higher risk of heart attack or stroke.
Persistent hypertension is one of the risk factors for strokes, heart attacks, heart failure and arterial aneurysm, and is a leading cause of chronic renal failure.
Hypertension can be classified as either essential or secondary. Essential hypertension indicates that no specific medical cause can be found to explain a patient's condition. Secondary hypertension indicates that the high blood pressure is a result of (i.e. secondary to) another condition, such as kidney disease or certain tumors (especially of the adrenal gland).
Recently, the JNC 7 (the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure) has defined blood pressure 120/80 mmHg to 139/89 mmHg as "prehypertension." Prehypertension is not a disease category; rather, it is a designation chosen to identify individuals at high risk of developing hypertension.
The Mayo Clinic website specifies blood pressure is "normal if it's below 120/80" but that "some data indicate that 115/75 mm Hg should be the gold standard."
"In patients with diabetes mellitus or kidney disease studies have shown that blood pressure over 130/80 mmHg should be considered high and warrants further treatment. Even lower numbers are considered diagnostic using home blood pressure monitoring devices.
Etiology of essential hypertension
Environment
A number of environmental factors have been implicated in the development of hypertension, including salt intake, obesity, occupation, alcohol intake, family size, stimulant intake, excessive noise exposure,[3] and crowding.
Salt sensitivity
Sodium is the environmental factor that has received the greatest attention. It is to be noted that approximately 60% of the essential hypertension population is responsive to sodium intake[citation needed].
Role of renin
Renin is an enzyme secreted by the juxtaglomerular cells of the kidney and linked with aldosterone in a negative feedback loop. The range of renin activity observed in hypertensive subjects tends to be broader than in normotensive individuals. In consequence, some hypertensive patients have been defined as having low-renin and others as having high-renin essential hypertension. Low-renin hypertension is more common in African Americans than Caucasians and may explain why they tend to respond better to diuretic therapy than drugs that interfere with the renin-angiotensin system.
Insulin resistance
Insulin is a polypeptide hormone secreted by the pancreas. Its main purpose is to regulate the levels of glucose in the body antagonistically with glucagon through negative feedback loops. Insulin also exhibits vasodilatory properties. In normotensive individuals, insulin may stimulate sympathetic activity without elevating mean arterial pressure. However, in more extreme conditions such as that of the metabolic syndrome, the increased sympathetic neural activity may over-ride the vasodilatory effects of insulin. Insulin resistance and/or hyperinsulinemia have been suggested as being responsible for the increased arterial pressure in some patients with hypertension. This feature is now widely recognized as part of syndrome X, or the metabolic syndrome.
Sleep apnea
Sleep apnea is a common, under recognized cause of hypertension. It is best treated with UPPP, tonsilectomy, adenoidectomy, sinus surgery, weight loss, nocturnal nasal positive airway pressure, or the Mandibular advancement splint (MAS).
Genetics
Hypertension is one of the most common complex genetic disorders, with genetic heritability averaging 30%. Data supporting this view emerge from animal studies as well as in population studies in humans. Most of these studies support the concept that the inheritance is probably multifactorial or that a number of different genetic defects each have an elevated blood pressure as one of their phenotypic expressions.
More than 50 genes have been examined in association studies with hypertension, and the number is constantly growing..
Other etiologies
There are some anecdotal or transient causes of high blood pressure. These are not to be confused with the disease called hypertension in which there is an intrinsic physiopathological mechanism as described below.
Etiology of secondary hypertension
Only in a small minority of patients with elevated arterial pressure, can a specific cause be identified. These individuals will probably have an endocrine or renal defect that, if corrected, could bring blood pressure back to normal values.
Renal hypertension
Hypertension produced by diseases of the kidney. A simple explanation for renal vascular hypertension is that decreased perfusion of renal tissue due to stenosis of a main or branch renal artery activates the renin-angiotensin system.
Adrenal hypertension
Hypertension is a feature of a variety of adrenal cortical abnormalities. In primary aldosteronism there is a clear relationship between the aldosterone-induced sodium retention and the hypertension.
In patients with pheochromocytoma increased secretion of catecholamines such as epinephrine and norepinephrine by a tumor (most often located in the adrenal medulla) causes excessive stimulation of [adrenergic receptors], which results in peripheral vasoconstriction and cardiac stimulation. This diagnosis is confirmed by demonstrating increased urinary excretion of epinephrine and norepinephrine and/or their metabolites (vanillylmandelic acid).
Hypercalcemia
Coarctation of the aorta
Diet
Certain medications, especially NSAIDS (Motrin/ibuprofen) and steroids can cause hypertension. Imported licorice (Glycyrrhiza glabra) inhibits the 11-hydroxysteroid hydrogenase enzyme (catalyzes the reaction of cortisol to cortison) which allows cortisol to stimulate the Mineralocorticoid Receptor (MR) which will lead to effects similar to hyperaldosteronism, which itself is a cause of hypertension. [Reference: Harrisons Internal Medicine, online edition (2007-04-14)]
Age
Over time, the number of collagen fibers in artery and arteriole walls increases, making blood vessels stiffer. With the reduced elasticity comes a smaller cross-sectional area in systole, and so a raised mean arterial blood pressure.
Pathophysiology
Most of the secondary mechanisms associated with hypertension are generally fully understood, and are outlined at secondary hypertension. However, those associated with essential (primary) hypertension are far less understood. What is known is that cardiac output is raised early in the disease course, with total peripheral resistance (TPR) normal; over time cardiac output drops to normal levels but TPR is increased. Three theories have been proposed to explain this:
• Inability of the kidneys to excrete sodium, resulting in natriuretic factors such as Atrial Natriuretic Factor being secreted to promote salt excretion with the side-effect of raising total peripheral resistance.
• An overactive renin / angiotension system leads to vasoconstriction and retention of sodium and water. The increase in blood volume leads to hypertension.
• An overactive sympathetic nervous system, leading to increased stress responses.
It is also known that hypertension is highly heritable and polygenic (caused by more than one gene) and a few candidate genes have been postulated in the etiology of this condition.
Signs and symptoms
Hypertension is usually found incidentally - "case finding" - by healthcare professionals during a routine checkup. The only test for hypertension is a blood pressure measurement. Hypertension in isolation usually produces no symptoms.
Malignant hypertension (or accelerated hypertension) is distinct as a late phase in the condition, and may present with headaches, blurred vision and end-organ damage.
It is recognized that stressful situations can increase the blood pressure;
Hypertension is often confused with mental tension, stress and anxiety. While chronic anxiety is associated with poor outcomes in people with hypertension, it alone does not cause it.
Hypertensive urgencies and emergencies
Hypertension is rarely severe enough to cause symptoms. These typically only surface with a systolic blood pressure over 240 mmHg and/or a diastolic blood pressure over 120 mmHg. These pressures without signs of end-organ damage (such as renal failure) are termed "accelerated" hypertension. When end-organ damage is possible or already ongoing, but in absence of raised intracranial pressure, it is called hypertensive emergency. Hypertension under this circumstance needs to be controlled, but prolonged hospitalization is not necessarily required. When hypertension causes increased intracranial pressure, it is called malignant hypertension. Increased intracranial pressure causes papilledema, which is visible on ophthalmoscopic examination of the retina.
Complications
While elevated blood pressure alone is not an illness, it often requires treatment due to its short- and long-term effects on many organs. The risk is increased for:
• Cerebrovascular accident (CVAs or strokes)
• Myocardial infarction (heart attack)
• Hypertensive cardiomyopathy (heart failure due to chronically high blood pressure)
• Hypertensive retinopathy - damage to the retina
• Hypertensive nephropathy - chronic renal failure due to chronically high blood pressure
Pregnancy
Although few women of childbearing age have high blood pressure, up to 10% develop hypertension of pregnancy. While generally benign, it may herald three complications of pregnancy: pre-eclampsia, HELLP syndrome and eclampsia. Follow-up and control with medication is therefore often necessary.
Hypertension, commonly referred to as "high blood pressure", is a medical condition in which the blood pressure is chronically elevated. While it is formally called arterial hypertension, the word "hypertension" without a qualifier usually refers to arterial hypertension. Hypertension has been associated with a higher risk of heart attack or stroke.
Persistent hypertension is one of the risk factors for strokes, heart attacks, heart failure and arterial aneurysm, and is a leading cause of chronic renal failure.
Hypertension can be classified as either essential or secondary. Essential hypertension indicates that no specific medical cause can be found to explain a patient's condition. Secondary hypertension indicates that the high blood pressure is a result of (i.e. secondary to) another condition, such as kidney disease or certain tumors (especially of the adrenal gland).
Recently, the JNC 7 (the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure) has defined blood pressure 120/80 mmHg to 139/89 mmHg as "prehypertension." Prehypertension is not a disease category; rather, it is a designation chosen to identify individuals at high risk of developing hypertension.
The Mayo Clinic website specifies blood pressure is "normal if it's below 120/80" but that "some data indicate that 115/75 mm Hg should be the gold standard."
"In patients with diabetes mellitus or kidney disease studies have shown that blood pressure over 130/80 mmHg should be considered high and warrants further treatment. Even lower numbers are considered diagnostic using home blood pressure monitoring devices.
Etiology of essential hypertension
Environment
A number of environmental factors have been implicated in the development of hypertension, including salt intake, obesity, occupation, alcohol intake, family size, stimulant intake, excessive noise exposure,[3] and crowding.
Salt sensitivity
Sodium is the environmental factor that has received the greatest attention. It is to be noted that approximately 60% of the essential hypertension population is responsive to sodium intake[citation needed].
Role of renin
Renin is an enzyme secreted by the juxtaglomerular cells of the kidney and linked with aldosterone in a negative feedback loop. The range of renin activity observed in hypertensive subjects tends to be broader than in normotensive individuals. In consequence, some hypertensive patients have been defined as having low-renin and others as having high-renin essential hypertension. Low-renin hypertension is more common in African Americans than Caucasians and may explain why they tend to respond better to diuretic therapy than drugs that interfere with the renin-angiotensin system.
Insulin resistance
Insulin is a polypeptide hormone secreted by the pancreas. Its main purpose is to regulate the levels of glucose in the body antagonistically with glucagon through negative feedback loops. Insulin also exhibits vasodilatory properties. In normotensive individuals, insulin may stimulate sympathetic activity without elevating mean arterial pressure. However, in more extreme conditions such as that of the metabolic syndrome, the increased sympathetic neural activity may over-ride the vasodilatory effects of insulin. Insulin resistance and/or hyperinsulinemia have been suggested as being responsible for the increased arterial pressure in some patients with hypertension. This feature is now widely recognized as part of syndrome X, or the metabolic syndrome.
Sleep apnea
Sleep apnea is a common, under recognized cause of hypertension. It is best treated with UPPP, tonsilectomy, adenoidectomy, sinus surgery, weight loss, nocturnal nasal positive airway pressure, or the Mandibular advancement splint (MAS).
Genetics
Hypertension is one of the most common complex genetic disorders, with genetic heritability averaging 30%. Data supporting this view emerge from animal studies as well as in population studies in humans. Most of these studies support the concept that the inheritance is probably multifactorial or that a number of different genetic defects each have an elevated blood pressure as one of their phenotypic expressions.
More than 50 genes have been examined in association studies with hypertension, and the number is constantly growing..
Other etiologies
There are some anecdotal or transient causes of high blood pressure. These are not to be confused with the disease called hypertension in which there is an intrinsic physiopathological mechanism as described below.
Etiology of secondary hypertension
Only in a small minority of patients with elevated arterial pressure, can a specific cause be identified. These individuals will probably have an endocrine or renal defect that, if corrected, could bring blood pressure back to normal values.
Renal hypertension
Hypertension produced by diseases of the kidney. A simple explanation for renal vascular hypertension is that decreased perfusion of renal tissue due to stenosis of a main or branch renal artery activates the renin-angiotensin system.
Adrenal hypertension
Hypertension is a feature of a variety of adrenal cortical abnormalities. In primary aldosteronism there is a clear relationship between the aldosterone-induced sodium retention and the hypertension.
In patients with pheochromocytoma increased secretion of catecholamines such as epinephrine and norepinephrine by a tumor (most often located in the adrenal medulla) causes excessive stimulation of [adrenergic receptors], which results in peripheral vasoconstriction and cardiac stimulation. This diagnosis is confirmed by demonstrating increased urinary excretion of epinephrine and norepinephrine and/or their metabolites (vanillylmandelic acid).
Hypercalcemia
Coarctation of the aorta
Diet
Certain medications, especially NSAIDS (Motrin/ibuprofen) and steroids can cause hypertension. Imported licorice (Glycyrrhiza glabra) inhibits the 11-hydroxysteroid hydrogenase enzyme (catalyzes the reaction of cortisol to cortison) which allows cortisol to stimulate the Mineralocorticoid Receptor (MR) which will lead to effects similar to hyperaldosteronism, which itself is a cause of hypertension. [Reference: Harrisons Internal Medicine, online edition (2007-04-14)]
Age
Over time, the number of collagen fibers in artery and arteriole walls increases, making blood vessels stiffer. With the reduced elasticity comes a smaller cross-sectional area in systole, and so a raised mean arterial blood pressure.
Pathophysiology
Most of the secondary mechanisms associated with hypertension are generally fully understood, and are outlined at secondary hypertension. However, those associated with essential (primary) hypertension are far less understood. What is known is that cardiac output is raised early in the disease course, with total peripheral resistance (TPR) normal; over time cardiac output drops to normal levels but TPR is increased. Three theories have been proposed to explain this:
• Inability of the kidneys to excrete sodium, resulting in natriuretic factors such as Atrial Natriuretic Factor being secreted to promote salt excretion with the side-effect of raising total peripheral resistance.
• An overactive renin / angiotension system leads to vasoconstriction and retention of sodium and water. The increase in blood volume leads to hypertension.
• An overactive sympathetic nervous system, leading to increased stress responses.
It is also known that hypertension is highly heritable and polygenic (caused by more than one gene) and a few candidate genes have been postulated in the etiology of this condition.
Signs and symptoms
Hypertension is usually found incidentally - "case finding" - by healthcare professionals during a routine checkup. The only test for hypertension is a blood pressure measurement. Hypertension in isolation usually produces no symptoms.
Malignant hypertension (or accelerated hypertension) is distinct as a late phase in the condition, and may present with headaches, blurred vision and end-organ damage.
It is recognized that stressful situations can increase the blood pressure;
Hypertension is often confused with mental tension, stress and anxiety. While chronic anxiety is associated with poor outcomes in people with hypertension, it alone does not cause it.
Hypertensive urgencies and emergencies
Hypertension is rarely severe enough to cause symptoms. These typically only surface with a systolic blood pressure over 240 mmHg and/or a diastolic blood pressure over 120 mmHg. These pressures without signs of end-organ damage (such as renal failure) are termed "accelerated" hypertension. When end-organ damage is possible or already ongoing, but in absence of raised intracranial pressure, it is called hypertensive emergency. Hypertension under this circumstance needs to be controlled, but prolonged hospitalization is not necessarily required. When hypertension causes increased intracranial pressure, it is called malignant hypertension. Increased intracranial pressure causes papilledema, which is visible on ophthalmoscopic examination of the retina.
Complications
While elevated blood pressure alone is not an illness, it often requires treatment due to its short- and long-term effects on many organs. The risk is increased for:
• Cerebrovascular accident (CVAs or strokes)
• Myocardial infarction (heart attack)
• Hypertensive cardiomyopathy (heart failure due to chronically high blood pressure)
• Hypertensive retinopathy - damage to the retina
• Hypertensive nephropathy - chronic renal failure due to chronically high blood pressure
Pregnancy
Although few women of childbearing age have high blood pressure, up to 10% develop hypertension of pregnancy. While generally benign, it may herald three complications of pregnancy: pre-eclampsia, HELLP syndrome and eclampsia. Follow-up and control with medication is therefore often necessary.
Sat Apr 08, 2023 8:31 am by Dr Abdul Aziz Awan
» Video for our MPH colleagues. Must watch
Sun Aug 07, 2022 11:56 pm by The Saint
» Salam
Sun Jan 31, 2021 7:40 am by mr dentist
» Feeling Sad
Tue Feb 04, 2020 8:27 pm by mr dentist
» Look here. Its 2020 and this is what we found
Mon Jan 27, 2020 7:23 am by izzatullah
» Sad News
Fri Jan 11, 2019 6:17 am by ameen
» Pakistan Demographic Profile 2018
Fri May 18, 2018 9:42 am by Dr Abdul Aziz Awan
» Good evening all fellows
Wed Apr 25, 2018 10:16 am by Dr Abdul Aziz Awan
» Urdu Poetry
Sat Apr 04, 2015 12:28 pm by Dr Abdul Aziz Awan