Diabetes mellitus
Epidemiology and statistics
In 2006, according to the World Health Organization, at least 171 million people worldwide suffer from diabetes. Its incidence is increasing rapidly, and it is estimated that by the year 2030, this number will double. Diabetes mellitus occurs throughout the world, but is more common (especially type 2) in the more developed countries. The greatest increase in prevalence is, however, expected to occur in Asia and Africa, where most patients will likely be found by 2030. The increase in incidence of diabetes in developing countries follows the trend of urbanization and lifestyle changes, perhaps most importantly a "Western-style" diet. This has suggested an environmental (i.e., dietary) effect, but there is little understanding of the mechanism(s) at present, though there is much speculation, some of it most compellingly presented.
Diabetes is in the top 10, and perhaps the top 5, of the most significant diseases in the developed world, and is gaining in significance there and elsewhere.
Diabetes mellitus is a metabolic disorder characterized by hyperglycemia (high blood sugar) and other signs, as distinct from a single disease or condition. The World Health Organization recognizes three main forms of diabetes: type 1, type 2, and gestational diabetes (occurring during pregnancy), which have similar signs, symptoms, and consequences, but different causes and population distributions. Type 1 is usually due to autoimmune destruction of the pancreatic beta cells which produce insulin. Type 2 is characterized by tissue-wide insulin resistance and varies widely; it sometimes progresses to loss of beta cell function. Gestational diabetes is similar to type 2 diabetes, in that it involves insulin resistance; the hormones of pregnancy cause insulin resistance in those women genetically predisposed to developing this condition.
Types 1 and 2 are incurable chronic conditions, but have been treatable since insulin became medically available in 1921, and are nowadays usually managed with a combination of dietary treatment, tablets and, frequently, insulin supplementation. Gestational diabetes typically resolves with delivery.
Diabetes can cause many complications. Acute complications (hypoglycemia, ketoacidosis or nonketotic hyperosmolar coma) may occur if the disease is not adequately controlled. Serious long-term complications include cardiovascular disease (doubled risk), chronic renal failure (diabetic nephropathy is the main cause of dialysis in developed world adults), retinal damage (which can lead to blindness and is the most significant cause of adult blindness in the non-elderly in the developed world), nerve damage (of several kinds), and microvascular damage, which may cause erectile dysfunction (impotence) and poor healing. Poor healing of wounds, particularly of the feet, can lead to gangrene which can require amputation — the leading cause of non-traumatic amputation in adults in the developed world. Adequate treatment of diabetes, as well as increased emphasis on blood pressure control and lifestyle factors (such as smoking and keeping a healthy body weight), may improve the risk profile of most aforementioned complications.
Terminology
The term diabetes (Greek: διαβήτης) was coined by Aretaeus of Cappadocia. It is derived from the Greek word διαβαίνειν, diabaínein that literally means "passing through," or "siphon", a reference to one of diabetes' major symptoms—excessive urine production. In 1675 Thomas Willis added mellitus from the Latin word meaning a sweet taste. This had been noticed in urine by the ancient Greeks, Chinese, Egyptians, and Indians. In 1776 Matthew Dobson confirmed that the sweet taste was because of an excess of a kind of sugar in the urine and blood of people with diabetes.
The ancient Indians tested for diabetes by observing whether ants were attracted to a person's urine, and called the ailment "sweet urine disease" (Madhumeha). The Korean, Chinese, and Japanese words for diabetes are based on the same ideographs and also mean "sweet urine disease".
Diabetes, without qualification, usually refers to diabetes mellitus, but there are several rarer conditions also named diabetes. The most common of these is diabetes insipidus (insipidus meaning "without taste" in Latin) in which the urine is not sweet; it can be caused by either kidney (nephrogenic DI) or pituitary gland (central DI) damage.
The term "type 1 diabetes" has universally replaced several former terms, including childhood-onset diabetes, juvenile diabetes, and insulin-dependent diabetes. "Type 2 diabetes" has also replaced several older terms, including adult-onset diabetes, obesity-related diabetes, and non-insulin-dependent diabetes. Beyond these numbers, there is no agreed standard. Various sources have defined "type 3 diabetes" as, among others:
• Gestational diabetes
• Insulin-resistant type 1 diabetes (or "double diabetes")
• Type 2 diabetes which has progressed to require injected insulin.
• Latent autoimmune diabetes of adults (or LADA or "type 1.5" diabetes)
Causes and types
Mechanism of insulin release in normal pancreatic beta cells. Insulin production is more or less constant within the beta cells, irrespective of blood glucose levels. It is stored within vacuoles pending release, via exocytosis, which is triggered by increased blood glucose levels.
Because insulin is the principal hormone that regulates uptake of glucose into most cells from the blood (primarily muscle and fat cells, but not central nervous system cells), deficiency of insulin or the insensitivity of its receptors plays a central role in all forms of diabetes mellitus. Much of the carbohydrate in food is converted within a few hours to the monosaccharide glucose, the principal carbohydrate found in blood. Some carbohydrates are not converted. Notable examples include fruit sugar (fructose) that is usable as cellular fuel, but it is not converted to glucose and does not participate in the insulin / glucose metabolic regulatory mechanism; additionally, the carbohydrate cellulose (though it is actually many glucose molecules in long chains) is not converted to glucose, as humans and many animals have no digestive pathway capable of handling cellulose. Insulin is released into the blood by beta cells (β-cells) in the pancreas in response to rising levels of blood glucose (e.g., after a meal). Insulin enables most body cells (about 2/3 is the usual estimate, including muscle cells and adipose tissue) to absorb glucose from the blood for use as fuel, for conversion to other needed molecules, or for storage. Insulin is also the principal control signal for conversion of glucose (the basic sugar used for fuel) to glycogen for internal storage in liver and muscle cells. Reduced glucose levels result both in the reduced release of insulin from the beta cells and in the reverse conversion of glycogen to glucose when glucose levels fall, although only glucose thus recovered by the liver re-enters the bloodstream as muscle cells lack the necessary export mechanism.
Higher insulin levels increase many anabolic ("building up") processes such as cell growth and duplication, protein synthesis, and fat storage. Insulin is the principal signal in converting many of the bidirectional processes of metabolism from a catabolic to an anabolic direction, and vice versa. In particular, it is the trigger for entering or leaving ketosis (ie, the fat burning metabolic phase).
If the amount of insulin available is insufficient, if cells respond poorly to the effects of insulin (insulin insensitivity or resistance), or if the insulin itself is defective, glucose will not be handled properly by body cells (about ⅔ require it) or stored appropriately in the liver and muscles. The net effect is persistent high levels of blood glucose, poor protein synthesis, and other metabolic derangements, such as acidosis.
Type 1 diabetes mellitus
Type 1 diabetes mellitus—formerly known as insulin-dependent diabetes (IDDM), childhood diabetes or also known as juvenile diabetes, is characterized by loss of the insulin-producing beta cells of the islets of Langerhans of the pancreas leading to a deficiency of insulin. It should be noted that there is no known preventative measure that can be taken against type 1 diabetes. Most people affected by type 1 diabetes are otherwise healthy and of a healthy weight when onset occurs. Diet and exercise cannot reverse or prevent type 1 diabetes. Sensitivity and responsiveness to insulin are usually normal, especially in the early stages. This type comprises up to 10% of total cases in North America and Europe, though this varies by geographical location. This type of diabetes can affect children or adults but was traditionally termed "juvenile diabetes" because it represents a majority of cases of diabetes affecting children.
The most common cause of beta cell loss leading to type 1 diabetes is autoimmune destruction, accompanied by antibodies directed against insulin and islet cell proteins. The principal treatment of type 1 diabetes, even from the earliest stages, is replacement of insulin. Without insulin, ketosis and diabetic ketoacidosis can develop and coma or death will result.
Currently, type 1 diabetes can be treated only with insulin, with careful monitoring of blood glucose levels using blood testing monitors. Emphasis is also placed on lifestyle adjustments (diet and exercise). Apart from the common subcutaneous injections, it is also possible to deliver insulin by a pump, which allows continuous infusion of insulin 24 hours a day at preset levels and the ability to program doses (a bolus) of insulin as needed at meal times. It is also possible to deliver insulin with an inhaled powder.
Type 1 treatment must be continued indefinitely. Treatment does not impair normal activities, if sufficient awareness, appropriate care, and discipline in testing and medication is taken. The average glucose level for the type 1 patient should be as close to normal (80–120 mg/dl, 4–6 mmol/l) as possible. Some physicians suggest up to 140–150 mg/dl (7-7.5 mmol/l) for those having trouble with lower values, such as frequent hypoglycemic events. Values above 200 mg/dl (10 mmol/l) are often accompanied by discomfort and frequent urination leading to dehydration. Values above 300 mg/dl (15 mmol/l) usually require immediate treatment and may lead to ketoacidosis. Low levels of blood glucose, called hypoglycemia, may lead to seizures or episodes of unconsciousness.
Epidemiology and statistics
In 2006, according to the World Health Organization, at least 171 million people worldwide suffer from diabetes. Its incidence is increasing rapidly, and it is estimated that by the year 2030, this number will double. Diabetes mellitus occurs throughout the world, but is more common (especially type 2) in the more developed countries. The greatest increase in prevalence is, however, expected to occur in Asia and Africa, where most patients will likely be found by 2030. The increase in incidence of diabetes in developing countries follows the trend of urbanization and lifestyle changes, perhaps most importantly a "Western-style" diet. This has suggested an environmental (i.e., dietary) effect, but there is little understanding of the mechanism(s) at present, though there is much speculation, some of it most compellingly presented.
Diabetes is in the top 10, and perhaps the top 5, of the most significant diseases in the developed world, and is gaining in significance there and elsewhere.
Diabetes mellitus is a metabolic disorder characterized by hyperglycemia (high blood sugar) and other signs, as distinct from a single disease or condition. The World Health Organization recognizes three main forms of diabetes: type 1, type 2, and gestational diabetes (occurring during pregnancy), which have similar signs, symptoms, and consequences, but different causes and population distributions. Type 1 is usually due to autoimmune destruction of the pancreatic beta cells which produce insulin. Type 2 is characterized by tissue-wide insulin resistance and varies widely; it sometimes progresses to loss of beta cell function. Gestational diabetes is similar to type 2 diabetes, in that it involves insulin resistance; the hormones of pregnancy cause insulin resistance in those women genetically predisposed to developing this condition.
Types 1 and 2 are incurable chronic conditions, but have been treatable since insulin became medically available in 1921, and are nowadays usually managed with a combination of dietary treatment, tablets and, frequently, insulin supplementation. Gestational diabetes typically resolves with delivery.
Diabetes can cause many complications. Acute complications (hypoglycemia, ketoacidosis or nonketotic hyperosmolar coma) may occur if the disease is not adequately controlled. Serious long-term complications include cardiovascular disease (doubled risk), chronic renal failure (diabetic nephropathy is the main cause of dialysis in developed world adults), retinal damage (which can lead to blindness and is the most significant cause of adult blindness in the non-elderly in the developed world), nerve damage (of several kinds), and microvascular damage, which may cause erectile dysfunction (impotence) and poor healing. Poor healing of wounds, particularly of the feet, can lead to gangrene which can require amputation — the leading cause of non-traumatic amputation in adults in the developed world. Adequate treatment of diabetes, as well as increased emphasis on blood pressure control and lifestyle factors (such as smoking and keeping a healthy body weight), may improve the risk profile of most aforementioned complications.
Terminology
The term diabetes (Greek: διαβήτης) was coined by Aretaeus of Cappadocia. It is derived from the Greek word διαβαίνειν, diabaínein that literally means "passing through," or "siphon", a reference to one of diabetes' major symptoms—excessive urine production. In 1675 Thomas Willis added mellitus from the Latin word meaning a sweet taste. This had been noticed in urine by the ancient Greeks, Chinese, Egyptians, and Indians. In 1776 Matthew Dobson confirmed that the sweet taste was because of an excess of a kind of sugar in the urine and blood of people with diabetes.
The ancient Indians tested for diabetes by observing whether ants were attracted to a person's urine, and called the ailment "sweet urine disease" (Madhumeha). The Korean, Chinese, and Japanese words for diabetes are based on the same ideographs and also mean "sweet urine disease".
Diabetes, without qualification, usually refers to diabetes mellitus, but there are several rarer conditions also named diabetes. The most common of these is diabetes insipidus (insipidus meaning "without taste" in Latin) in which the urine is not sweet; it can be caused by either kidney (nephrogenic DI) or pituitary gland (central DI) damage.
The term "type 1 diabetes" has universally replaced several former terms, including childhood-onset diabetes, juvenile diabetes, and insulin-dependent diabetes. "Type 2 diabetes" has also replaced several older terms, including adult-onset diabetes, obesity-related diabetes, and non-insulin-dependent diabetes. Beyond these numbers, there is no agreed standard. Various sources have defined "type 3 diabetes" as, among others:
• Gestational diabetes
• Insulin-resistant type 1 diabetes (or "double diabetes")
• Type 2 diabetes which has progressed to require injected insulin.
• Latent autoimmune diabetes of adults (or LADA or "type 1.5" diabetes)
Causes and types
Mechanism of insulin release in normal pancreatic beta cells. Insulin production is more or less constant within the beta cells, irrespective of blood glucose levels. It is stored within vacuoles pending release, via exocytosis, which is triggered by increased blood glucose levels.
Because insulin is the principal hormone that regulates uptake of glucose into most cells from the blood (primarily muscle and fat cells, but not central nervous system cells), deficiency of insulin or the insensitivity of its receptors plays a central role in all forms of diabetes mellitus. Much of the carbohydrate in food is converted within a few hours to the monosaccharide glucose, the principal carbohydrate found in blood. Some carbohydrates are not converted. Notable examples include fruit sugar (fructose) that is usable as cellular fuel, but it is not converted to glucose and does not participate in the insulin / glucose metabolic regulatory mechanism; additionally, the carbohydrate cellulose (though it is actually many glucose molecules in long chains) is not converted to glucose, as humans and many animals have no digestive pathway capable of handling cellulose. Insulin is released into the blood by beta cells (β-cells) in the pancreas in response to rising levels of blood glucose (e.g., after a meal). Insulin enables most body cells (about 2/3 is the usual estimate, including muscle cells and adipose tissue) to absorb glucose from the blood for use as fuel, for conversion to other needed molecules, or for storage. Insulin is also the principal control signal for conversion of glucose (the basic sugar used for fuel) to glycogen for internal storage in liver and muscle cells. Reduced glucose levels result both in the reduced release of insulin from the beta cells and in the reverse conversion of glycogen to glucose when glucose levels fall, although only glucose thus recovered by the liver re-enters the bloodstream as muscle cells lack the necessary export mechanism.
Higher insulin levels increase many anabolic ("building up") processes such as cell growth and duplication, protein synthesis, and fat storage. Insulin is the principal signal in converting many of the bidirectional processes of metabolism from a catabolic to an anabolic direction, and vice versa. In particular, it is the trigger for entering or leaving ketosis (ie, the fat burning metabolic phase).
If the amount of insulin available is insufficient, if cells respond poorly to the effects of insulin (insulin insensitivity or resistance), or if the insulin itself is defective, glucose will not be handled properly by body cells (about ⅔ require it) or stored appropriately in the liver and muscles. The net effect is persistent high levels of blood glucose, poor protein synthesis, and other metabolic derangements, such as acidosis.
Type 1 diabetes mellitus
Type 1 diabetes mellitus—formerly known as insulin-dependent diabetes (IDDM), childhood diabetes or also known as juvenile diabetes, is characterized by loss of the insulin-producing beta cells of the islets of Langerhans of the pancreas leading to a deficiency of insulin. It should be noted that there is no known preventative measure that can be taken against type 1 diabetes. Most people affected by type 1 diabetes are otherwise healthy and of a healthy weight when onset occurs. Diet and exercise cannot reverse or prevent type 1 diabetes. Sensitivity and responsiveness to insulin are usually normal, especially in the early stages. This type comprises up to 10% of total cases in North America and Europe, though this varies by geographical location. This type of diabetes can affect children or adults but was traditionally termed "juvenile diabetes" because it represents a majority of cases of diabetes affecting children.
The most common cause of beta cell loss leading to type 1 diabetes is autoimmune destruction, accompanied by antibodies directed against insulin and islet cell proteins. The principal treatment of type 1 diabetes, even from the earliest stages, is replacement of insulin. Without insulin, ketosis and diabetic ketoacidosis can develop and coma or death will result.
Currently, type 1 diabetes can be treated only with insulin, with careful monitoring of blood glucose levels using blood testing monitors. Emphasis is also placed on lifestyle adjustments (diet and exercise). Apart from the common subcutaneous injections, it is also possible to deliver insulin by a pump, which allows continuous infusion of insulin 24 hours a day at preset levels and the ability to program doses (a bolus) of insulin as needed at meal times. It is also possible to deliver insulin with an inhaled powder.
Type 1 treatment must be continued indefinitely. Treatment does not impair normal activities, if sufficient awareness, appropriate care, and discipline in testing and medication is taken. The average glucose level for the type 1 patient should be as close to normal (80–120 mg/dl, 4–6 mmol/l) as possible. Some physicians suggest up to 140–150 mg/dl (7-7.5 mmol/l) for those having trouble with lower values, such as frequent hypoglycemic events. Values above 200 mg/dl (10 mmol/l) are often accompanied by discomfort and frequent urination leading to dehydration. Values above 300 mg/dl (15 mmol/l) usually require immediate treatment and may lead to ketoacidosis. Low levels of blood glucose, called hypoglycemia, may lead to seizures or episodes of unconsciousness.
Sat Apr 08, 2023 8:31 am by Dr Abdul Aziz Awan
» Video for our MPH colleagues. Must watch
Sun Aug 07, 2022 11:56 pm by The Saint
» Salam
Sun Jan 31, 2021 7:40 am by mr dentist
» Feeling Sad
Tue Feb 04, 2020 8:27 pm by mr dentist
» Look here. Its 2020 and this is what we found
Mon Jan 27, 2020 7:23 am by izzatullah
» Sad News
Fri Jan 11, 2019 6:17 am by ameen
» Pakistan Demographic Profile 2018
Fri May 18, 2018 9:42 am by Dr Abdul Aziz Awan
» Good evening all fellows
Wed Apr 25, 2018 10:16 am by Dr Abdul Aziz Awan
» Urdu Poetry
Sat Apr 04, 2015 12:28 pm by Dr Abdul Aziz Awan